Lecture 6

Universal Turing Machine

Definition: A TM M is called an oblivious TM, if on every input x and $i \in \mathbb{N}$, the location

Definition: A TM M is called an oblivious TM, if on every input x and $i \in \mathbb{N}$, the location of each of M's heads at the *i*th step of execution on x is a function of |x| and *i*.

of each of M's heads at the *i*th step of execution on x is a function of |x| and *i*.

- **Definition:** A TM M is called an oblivious TM, if on every input x and $i \in \mathbb{N}$, the location
- **Claim:** Every TM M that runs in time-constructible time T(n) can be simulated by an

of each of M's heads at the *i*th step of execution on x is a function of |x| and *i*. oblivious TM M' that runs in $O(T(n)^2)$ time.

- **Definition:** A TM M is called an oblivious TM, if on every input x and $i \in \mathbb{N}$, the location
- **Claim:** Every TM M that runs in time-constructible time T(n) can be simulated by an

of each of M's heads at the *i*th step of execution on x is a function of |x| and *i*. oblivious TM M' that runs in $O(T(n)^2)$ time. **Proof:**

- **Definition:** A TM M is called an oblivious TM, if on every input x and $i \in \mathbb{N}$, the location
- **Claim:** Every TM M that runs in time-constructible time T(n) can be simulated by an

of each of M's heads at the *i*th step of execution on x is a function of |x| and *i*. oblivious TM M' that runs in $O(T(n)^2)$ time. **Proof:** Left as an exercise. Use the idea of the last claim of the last lecture.

- **Definition:** A TM M is called an oblivious TM, if on every input x and $i \in \mathbb{N}$, the location
- **Claim:** Every TM M that runs in time-constructible time T(n) can be simulated by an

of each of M's heads at the *i*th step of execution on x is a function of |x| and *i*. oblivious TM M' that runs in $O(T(n)^2)$ time. **Proof:** Left as an exercise. Use the idea of the last claim of the last lecture.

- **Definition:** A TM M is called an oblivious TM, if on every input x and $i \in \mathbb{N}$, the location
- **Claim:** Every TM M that runs in time-constructible time T(n) can be simulated by an

Observation: We can represent a TM *M* as a binary string

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Map:

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...)$

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow$

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ (0, 1, ▷, ⊔)

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ (L, R, S)

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow$

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0, 1, \triangleright, \sqcup) \rightarrow (1, 2, 3, 4)$ $(L, R, S) \rightarrow (1, 2, 3)$

Encoding an entry of δ :

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Encoding an entry of δ **:** Encode an entry of δ as encoding a tuple of integers.

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Encoding an entry of δ **:** Encode an entry of δ as encoding a tuple of integers.

 $\delta(q_1,\!0,\!1) = (q_2,\!0,\!L,\!R)$

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Encoding an entry of δ **:** Encode an entry of δ as encoding a tuple of integers.

 $\delta(q_1,\!0,\!1)=(q_2,\!0,\!L,R) \ \rightarrow$

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

 $\delta(q_1,0,1) = (q_2,0,L,R) \rightarrow 1111011101110001$

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

 $\delta(q_1,0,1) = (q_2,0,L,R) \rightarrow 1111011100011100001$

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

 $\delta(q_1,0,1) = (q_2,0,L,R) \rightarrow 1111011101110001110000011101110111$

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

- $\delta(q_1,0,1) = (q_2,0,L,R) \rightarrow 11110111011100011100000111011101$

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

Encoding the δ :

Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

 $\delta(q_1, 0, 1) = (q_2, 0, L, R) \rightarrow 111101110111000111000001110111011100$

Encoding the δ : Concatenate the encodings of all entries with 0101.

- Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$
- **Encoding an entry of** δ : Encode an entry of δ as encoding a tuple of integers.
 - $\delta(q_1, 0, 1) = (q_2, 0, L, R) \rightarrow 111101110111000111000001110111011100$

Encoding the δ : Concatenate the encodings of all entries with 0101.

enc(1st entry)

- Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$
- **Encoding an entry of** δ : Encode an entry of δ as encoding a tuple of integers.
 - $\delta(q_1, 0, 1) = (q_2, 0, L, R) \rightarrow 111101110111000111000001110111011100$

Encoding the δ : Concatenate the encodings of all entries with 0101.

enc(1st entry) 0101

- Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$
- **Encoding an entry of** δ : Encode an entry of δ as encoding a tuple of integers.
 - $\delta(q_1, 0, 1) = (q_2, 0, L, R) \rightarrow 111101110111000111000001110111011100$
- **Encoding the** δ : Concatenate the encodings of all entries with 0101.
 - enc(1st entry) 0101 enc(2st entry)

- Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$
- **Encoding an entry of** δ : Encode an entry of δ as encoding a tuple of integers.
 - $\delta(q_1, 0, 1) = (q_2, 0, L, R) \rightarrow 111101110111000111000001110111011100$
- **Encoding the** δ : Concatenate the encodings of all entries with 0101.
 - $enc(1st \text{ entry}) 0101 enc(2st \text{ entry}) \dots$

- Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$
- **Encoding an entry of** δ : Encode an entry of δ as encoding a tuple of integers.
 - $\delta(q_1, 0, 1) = (q_2, 0, L, R) \rightarrow 111101110111000111000001110111011100$
- **Encoding the** δ : Concatenate the encodings of all entries with 0101.
 - $enc(1st entry) 0101 enc(2st entry) \dots 0101$

- Map: $(q_{start}, q_{halt}, q_1, q_2, ...) \rightarrow (1, 2, 3, 4, ...)$ $(0,1, \triangleright, \sqcup) \rightarrow (1,2,3,4)$ $(L, R, S) \rightarrow (1, 2, 3)$
- **Encoding an entry of** δ : Encode an entry of δ as encoding a tuple of integers.
 - $\delta(q_1, 0, 1) = (q_2, 0, L, R) \rightarrow 111101110111000111000001110111011100$
- **Encoding the** δ : Concatenate the encodings of all entries with 0101.
 - $enc(1st entry) 0101 enc(2st entry) \dots 0101 enc(kth entry)$

Notation:

Notation:

• $\langle M \rangle$ denotes the encoding of M.

Notation:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Notation:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Notation:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Essential properties for encoding a TM:

• Every binary string represents a TM.

Notation:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Essential properties for encoding a TM:

• Every binary string represents a TM. (Map invalid strings to a trivial TM.)

Notation:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings.

Notation:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings. $enc(1st entry) 0101 enc(2st entry) \dots 0101 enc(kth entry)$

Notation:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings. $enc(1st entry) 0101 enc(2st entry) \dots 0101 enc(kth entry) 0101$

Notation:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings. $enc(1st entry) 0101 enc(2st entry) \dots 0101 enc(kth entry) 01011$

Notation:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings. $enc(1st entry) 0101 enc(2st entry) \dots 0101 enc(kth entry) 010111$

Notation:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings. $enc(1st entry) 0101 enc(2st entry) \dots 0101 enc(kth entry) 0101111$

Notation:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings. $enc(1st entry) 0101 enc(2st entry) \dots 0101 enc(kth entry) 01011111$

Notation:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Essential properties for encoding a TM:

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings.

 $enc(1st entry) 0101 enc(2st entry) \dots 0101 enc(kth entry) 01011111\dots$

Notation:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Essential properties for encoding a TM:

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings.

 $enc(1st \text{ entry}) 0101 enc(2st \text{ entry}) \dots 0101 enc(kth \text{ entry}) 01011111\dots$

Notation:

- $\langle M \rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Essential properties for encoding a TM:

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings.

 $enc(1st \text{ entry}) 0101 enc(2st \text{ entry}) \dots 0101 enc(kth \text{ entry}) 01011111\dots$

add arbitrary number of 1s in the end that are ignored

• Given (α, x) a **universal Turing machine** can simulate M_{α} on x.

- Given (α, x) a **universal Turing machine** can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.

- Given (α, x) a **universal Turing machine** can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.

Theorem: There exists a TM U such that $\forall x, \alpha \in \{0,1\}^*$, $U(x, \alpha) = M_{\alpha}(x)$.

- Given (α, x) a **universal Turing machine** can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.

Theorem: There exists a TM U such that $\forall x, \alpha \in \{0,1\}^*$, $U(x, \alpha) = M_{\alpha}(x)$.

- Given (α, x) a **universal Turing machine** can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.

- Given (α, x) a **universal Turing machine** can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.

Theorem: There exists a TM U such that if M_{α} halts on x within T steps,

- Given (α, x) a **universal Turing machine** can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.

if M_{α} halts on x within T steps, then U on (α, x) halts in $CT \log T$ steps,

- Given (α, x) a **universal Turing machine** can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.

- Given (α, x) a **universal Turing machine** can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.

only on $M'_{\alpha}s$ alphabet size, number of tapes, and number of states.

- Given (α, x) a **universal Turing machine** can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.
- output of M_{α} on x**Theorem:** There exists a TM U such that $\forall x, \alpha \in \{0,1\}^*$, $U(x, \alpha) = M_{\alpha}(x)$. Moreover, if M_{α} halts on x within T steps, then U on (α, x) halts in CT log T steps, where C depends only on $M'_{\alpha}s$ alphabet size, number of tapes, and number of states. **Proof of easier version (** CT^2 **instead of** $CT \log T$ **)**:

- Given (α, x) a **universal Turing machine** can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.
- output of M_{α} on x**Theorem:** There exists a TM U such that $\forall x, \alpha \in \{0,1\}^*$, $U(x, \alpha) = M_{\alpha}(x)$. Moreover, if M_{α} halts on x within T steps, then U on (α, x) halts in CT log T steps, where C depends only on $M'_{\alpha}s$ alphabet size, number of tapes, and number of states. **Proof of easier version (** CT^2 **instead of** $CT \log T$ **):** Next slide...

U

U

Input tape Work tape 1

Input tape Work tape 1 Work tape 2

Input tape Work tape 1 Work tape 2 Output tape

 \triangleright α

U

Input tape Work tape 1 Work tape 2 Output tape

Input tape

U

Work tape 1 Work tape 2

 \triangleright

Output tape

α	${\mathcal X}$	Ш	Ц	•••
simulation of M_{lpha} 's work tape			• • •	

Input tape

Work tape 1

U

Work tape 2

Output tape

X			• • •
of M_{lpha} 's work tape \cdots			-
	•		•
e of M_{lpha} and ot	theri	info	•••

\mathcal{X}	Ш	Ш	• • •
• •			-
of M_{lpha} 's work ta	ape	• • •	-
e of M_{α} and other info			
	-	-	
f M_{α} on x			

\mathcal{X}	Ш	Ш	• • •
• •			-
of M_{lpha} 's work ta	ape	• • •	-
e of M_{α} and other info			
	-	-	
f M_{α} on x			

U's simulation of one step of M_{α} :

• U reads the current symbols from WT 1 and writes them on WT 2.

- U reads the current symbols from WT 1 and writes them on WT 2.
- U scans the IT to find the entry of δ that matches with the current state and symbols.

- U reads the current symbols from WT 1 and writes them on WT 2.
- U scans the IT to find the entry of δ that matches with the current state and symbols. and writes the next state, new symbols, head movements on WT 2.

- U reads the current symbols from WT 1 and writes them on WT 2.
- U scans the *IT* to find the entry of δ that matches with the current state and symbols. and writes the next state, new symbols, head movements on *WT* 2.
- U changes the symbols on WT 1 and move tape heads (using ^).

- U reads the current symbols from WT 1 and writes them on WT 2. $(O(\log |\Gamma| . k.T))$
- U scans the *IT* to find the entry of δ that matches with the current state and symbols. and writes the next state, new symbols, head movements on *WT* 2.
- U changes the symbols on WT 1 and move tape heads (using $\hat{}$).

- U reads the current symbols from WT 1 and writes them on WT 2. $(O(\log |\Gamma| . k.T))$
- U scans the IT to find the entry of δ that matches with the current state and symbols. and writes the next state, new symbols, head movements on WT 2. (O(C'))
- U changes the symbols on WT 1 and move tape heads (using ^).

- U reads the current symbols from WT 1 and writes them on WT 2. $(O(\log |\Gamma| . k.T))$
- U scans the IT to find the entry of δ that matches with the current state and symbols. and writes the next state, new symbols, head movements on WT 2. (O(C'))
- U changes the symbols on WT 1 and move tape heads (using $\hat{}$). (O(log $[\Gamma] \cdot k \cdot T)$)

- U reads the current symbols from WT 1 and writes them on WT 2. $(O(\log |\Gamma| . k.T))$
- U scans the IT to find the entry of δ that matches with the current state and symbols. and writes the next state, new symbols, head movements on WT 2. (O(C'))
- U changes the symbols on WT 1 and move tape heads (using). $(O(\log |\Gamma| \cdot k \cdot T))$

