Lecture 6

Universal Turing Machine

Oblivious Turing Machine

Oblivious Turing Machine

Definition: A TM M is called an oblivious TM, if on every input x and $i \in \mathbb{N}$, the location

Oblivious Turing Machine

Definition: A TM M is called an oblivious TM, if on every input x and $i \in \mathbb{N}$, the location of each of M 's heads at the i th step of execution on x is a function of $|x|$ and i.

Oblivious Turing Machine

Definition: A TM M is called an oblivious TM, if on every input x and $i \in \mathbb{N}$, the location of each of M 's heads at the i th step of execution on x is a function of $|x|$ and i.

Claim: Every TM M that runs in time-constructible time $T(n)$ can be simulated by an

Oblivious Turing Machine

Definition: A TM M is called an oblivious TM, if on every input x and $i \in \mathbb{N}$, the location of each of M 's heads at the i th step of execution on x is a function of $|x|$ and i.

Claim: Every TM M that runs in time-constructible time $T(n)$ can be simulated by an oblivious TM M^{\prime} that runs in $O\left(T(n)^{2}\right)$ time.

Oblivious Turing Machine

Definition: A TM M is called an oblivious TM, if on every input x and $i \in \mathbb{N}$, the location of each of M 's heads at the i th step of execution on x is a function of $|x|$ and i.

Claim: Every TM M that runs in time-constructible time $T(n)$ can be simulated by an oblivious TM M^{\prime} that runs in $O\left(T(n)^{2}\right)$ time.

Proof:

Oblivious Turing Machine

Definition: A TM M is called an oblivious TM, if on every input x and $i \in \mathbb{N}$, the location of each of M 's heads at the i th step of execution on x is a function of $|x|$ and i.

Claim: Every TM M that runs in time-constructible time $T(n)$ can be simulated by an oblivious TM M^{\prime} that runs in $O\left(T(n)^{2}\right)$ time.

Proof: Left as an exercise. Use the idea of the last claim of the last lecture.

Oblivious Turing Machine

Definition: A TM M is called an oblivious TM, if on every input x and $i \in \mathbb{N}$, the location of each of M 's heads at the i th step of execution on x is a function of $|x|$ and i.

Claim: Every TM M that runs in time-constructible time $T(n)$ can be simulated by an oblivious TM M^{\prime} that runs in $O\left(T(n)^{2}\right)$ time.

Proof: Left as an exercise. Use the idea of the last claim of the last lecture.

Encoding a Turing Machine

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.
Map:

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.
Map: $\quad\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right)$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.
Map: $\quad\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) \rightarrow$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: }\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) \rightarrow(1,2,3,4, \ldots)
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\begin{gathered}
\text { Map: }\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup)
\end{gathered}
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow
\end{aligned}
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4)
\end{aligned}
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) &
\end{aligned}
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow
\end{aligned}
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ :

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right)
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 1111
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 111101
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 11110111
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 1111011101
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 11110111011100
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 1111011101110001
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 1111011101110001110000
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 111101110111000111000001
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 11110111011100011100000111
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 1111011101110001110000011101
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 111101110111000111000001110111
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 11110111011100011100000111011101
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 111101110111000111000001110111011100
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 111101110111000111000001110111011100
$$

Encoding the δ :

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 111101110111000111000001110111011100
$$

Encoding the δ : Concatenate the encodings of all entries with 0101.

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 111101110111000111000001110111011100
$$

Encoding the δ : Concatenate the encodings of all entries with 0101.

$$
e n c(1 s t \text { entry) }
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 111101110111000111000001110111011100
$$

Encoding the δ : Concatenate the encodings of all entries with 0101.

$$
e n c(1 \text { st entry) } 0101
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 111101110111000111000001110111011100
$$

Encoding the δ : Concatenate the encodings of all entries with 0101.

$$
e n c(1 s t \text { entry) } 0101 \text { enc(2st entry) }
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 111101110111000111000001110111011100
$$

Encoding the δ : Concatenate the encodings of all entries with 0101.

$$
e n c(1 s t \text { entry) } 0101 \text { enc(2st entry) }
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 111101110111000111000001110111011100
$$

Encoding the δ : Concatenate the encodings of all entries with 0101.

$$
e n c(1 \text { st entry) } 0101 \text { enc(2st entry) ... } 0101
$$

Encoding a Turing Machine

Observation: We can represent a TM M as a binary string by encoding the δ of M.

$$
\text { Map: } \begin{aligned}
\left(q_{\text {start }}, q_{\text {halt }}, q_{1}, q_{2}, \ldots\right) & \rightarrow(1,2,3,4, \ldots) \\
(0,1, \triangleright, \sqcup) & \rightarrow(1,2,3,4) \\
(L, R, S) & \rightarrow(1,2,3)
\end{aligned}
$$

Encoding an entry of δ : Encode an entry of δ as encoding a tuple of integers.

$$
\delta\left(q_{1}, 0,1\right)=\left(q_{2}, 0, L, R\right) \rightarrow 111101110111000111000001110111011100
$$

Encoding the δ : Concatenate the encodings of all entries with 0101.

$$
e n c(1 s t \text { entry) } 0101 \text { enc(2st entry) ... } 0101 \text { enc(kth entry) }
$$

Encoding a Turing Machine

Encoding a Turing Machine

Notation:

Encoding a Turing Machine

Notation:

- $\langle M\rangle$ denotes the encoding of M.

Encoding a Turing Machine

Notation:

- $\langle M\rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Encoding a Turing Machine

Notation:

- $\langle M\rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Essential properties for encoding a TM:

Encoding a Turing Machine

Notation:

- $\langle M\rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Essential properties for encoding a TM:

- Every binary string represents a TM.

Encoding a Turing Machine

Notation:

- $\langle M\rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Essential properties for encoding a TM:

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)

Encoding a Turing Machine

Notation:

- $\langle M\rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Essential properties for encoding a TM:

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings.

Encoding a Turing Machine

Notation:

- $\langle M\rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Essential properties for encoding a TM:

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings.

$$
e n c(1 \text { st entry) } 0101 \text { enc(2st entry) ... } 0101 \text { enc(kth entry) }
$$

Encoding a Turing Machine

Notation:

- $\langle M\rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Essential properties for encoding a TM:

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings.

$$
e n c(1 \text { st entry) } 0101 \text { enc(2st entry) ... } 0101 \text { enc(kth entry)0101 }
$$

Encoding a Turing Machine

Notation:

- $\langle M\rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Essential properties for encoding a TM:

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings.

$$
e n c(1 s t \text { entry) } 0101 \text { enc(2st entry) ... } 0101 \text { enc(kth entry)01011 }
$$

Encoding a Turing Machine

Notation:

- $\langle M\rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Essential properties for encoding a TM:

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings.

$$
e n c(1 \text { st entry) } 0101 \text { enc(2st entry) ... } 0101 \text { enc(kth entry)010111 }
$$

Encoding a Turing Machine

Notation:

- $\langle M\rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Essential properties for encoding a TM:

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings.

$$
\text { enc(1st entry) } 0101 \text { enc(2st entry) ... } 0101 \text { enc(kth entry)0101111 }
$$

Encoding a Turing Machine

Notation:

- $\langle M\rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Essential properties for encoding a TM:

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings.

Encoding a Turing Machine

Notation:

- $\langle M\rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Essential properties for encoding a TM:

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings.

$$
e n c(1 s t \text { entry) } 0101 \text { enc(2st entry) ... } 0101 \text { enc(kth entry)01011111... }
$$

Encoding a Turing Machine

Notation:

- $\langle M\rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Essential properties for encoding a TM:

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings.

$$
e n c(1 s t \text { entry) } 0101 \text { enc(2st entry) ... } 0101 \text { enc(kth entry)01011111... }
$$

Encoding a Turing Machine

Notation:

- $\langle M\rangle$ denotes the encoding of M.
- M_{α} denotes the TM that binary string α represents.

Essential properties for encoding a TM:

- Every binary string represents a TM. (Map invalid strings to a trivial TM.)
- Every TM is represented by infinitely many binary strings.

$$
e n c(1 s t \text { entry) } 0101 \text { enc(2st entry) ... } 0101 \text { enc(kth entry)01011111... }
$$

Universal Turing Machine

Universal Turing Machine

- Given (α, x) a universal Turing machine can simulate M_{α} on x.

Universal Turing Machine

- Given (α, x) a universal Turing machine can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.

Universal Turing Machine

- Given (α, x) a universal Turing machine can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.

Theorem: There exists a TM U such that $\forall x, \alpha \in\{0,1\}^{*}, U(x, \alpha)=M_{\alpha}(x)$.

Universal Turing Machine

- Given (α, x) a universal Turing machine can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.
output of M_{α} on x
Theorem: There exists a TM U such that $\forall x, \alpha \in\{0,1\}^{*}, U(x, \alpha)=M_{\alpha}(x)$.

Universal Turing Machine

- Given (α, x) a universal Turing machine can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.
output of M_{α} on x
Theorem: There exists a TM U such that $\forall x, \alpha \in\{0,1\}^{*}, U(x, \alpha)=M_{\alpha}(x)$. Moreover,

Universal Turing Machine

- Given (α, x) a universal Turing machine can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.
output of M_{α} on x
Theorem: There exists a TM U such that $\forall x, \alpha \in\{0,1\}^{*}, U(x, \alpha)=M_{\alpha}(x)$. Moreover, if M_{α} halts on x within T steps,

Universal Turing Machine

- Given (α, x) a universal Turing machine can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.
output of M_{α} on x
Theorem: There exists a TM U such that $\forall x, \alpha \in\{0,1\}^{*}, U(x, \alpha)=M_{\alpha}(x)$. Moreover, if M_{α} halts on x within T steps, then U on (α, x) halts in $C T \log T$ steps,

Universal Turing Machine

- Given (α, x) a universal Turing machine can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.
output of M_{α} on x
Theorem: There exists a TM U such that $\forall x, \alpha \in\{0,1\}^{*}, U(x, \alpha)=M_{\alpha}(x)$. Moreover, if M_{α} halts on x within T steps, then U on (α, x) halts in $C T \log T$ steps, where C depends

Universal Turing Machine

- Given (α, x) a universal Turing machine can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.
output of M_{α} on x
Theorem: There exists a TM U such that $\forall x, \alpha \in\{0,1\}^{*}, U(x, \alpha)=M_{\alpha}(x)$. Moreover, if M_{α} halts on x within T steps, then U on (α, x) halts in $C T \log T$ steps, where C depends only on $M_{\alpha}^{\prime} s$ alphabet size, number of tapes, and number of states.

Universal Turing Machine

- Given (α, x) a universal Turing machine can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.
output of M_{α} on x
Theorem: There exists a TM U such that $\forall x, \alpha \in\{0,1\}^{*}, U(x, \alpha)=M_{\alpha}(x)$. Moreover, if M_{α} halts on x within T steps, then U on (α, x) halts in $C T \log T$ steps, where C depends only on $M_{\alpha}^{\prime} s$ alphabet size, number of tapes, and number of states.

Proof of easier version ($C T^{2}$ instead of $C T \log T$):

Universal Turing Machine

- Given (α, x) a universal Turing machine can simulate M_{α} on x.
- Universal TM motivated the invention of general purpose electronic computers.
output of M_{α} on x
Theorem: There exists a TM U such that $\forall x, \alpha \in\{0,1\}^{*}, U(x, \alpha)=M_{\alpha}(x)$. Moreover, if M_{α} halts on x within T steps, then U on (α, x) halts in $C T \log T$ steps, where C depends only on $M_{\alpha}^{\prime} s$ alphabet size, number of tapes, and number of states.

Proof of easier version ($C T^{2}$ instead of $C T \log T$): Next slide...

Universal Turing Machine

Universal Turing Machine

U

Universal Turing Machine

Universal Turing Machine

Universal Turing Machine

Universal Turing Machine

Universal Turing Machine

Input tape

Work tape 1
Work tape 2

Output tape

Universal Turing Machine

Universal Turing Machine

Universal Turing Machine

Output tape

Universal Turing Machine

Universal Turing Machine

U 's simulation of one step of M_{α} :

Universal Turing Machine

U 's simulation of one step of M_{α} :

- U reads the current symbols from WT 1 and writes them on WT 2 .

Universal Turing Machine

U 's simulation of one step of M_{α} :

- U reads the current symbols from WT 1 and writes them on WT 2 .
- U scans the $I T$ to find the entry of δ that matches with the current state and symbols.

Universal Turing Machine

U 's simulation of one step of M_{α} :

- U reads the current symbols from WT 1 and writes them on WT 2 .
- U scans the $I T$ to find the entry of δ that matches with the current state and symbols. and writes the next state, new symbols, head movements on WT 2.

Universal Turing Machine

U 's simulation of one step of M_{α} :

- U reads the current symbols from WT 1 and writes them on WT 2 .
- U scans the $I T$ to find the entry of δ that matches with the current state and symbols. and writes the next state, new symbols, head movements on WT 2.
- U changes the symbols on $W T 1$ and move tape heads (using ${ }^{\wedge}$).

Universal Turing Machine

U 's simulation of one step of M_{α} :

- U reads the current symbols from $W T 1$ and writes them on $W T 2$. $(O(\log |\Gamma| . k . T))$
- U scans the $I T$ to find the entry of δ that matches with the current state and symbols. and writes the next state, new symbols, head movements on WT 2.
- U changes the symbols on $W T 1$ and move tape heads (using ${ }^{\wedge}$).

Universal Turing Machine

U 's simulation of one step of M_{α} :

- U reads the current symbols from $W T 1$ and writes them on $W T 2$. $(O(\log |\Gamma| . k . T))$
- U scans the $I T$ to find the entry of δ that matches with the current state and symbols. and writes the next state, new symbols, head movements on WT 2. (O($\left.C^{\prime}\right)$)
- U changes the symbols on $W T 1$ and move tape heads (using ${ }^{\wedge}$).

Universal Turing Machine

U 's simulation of one step of M_{α} :

- U reads the current symbols from $W T 1$ and writes them on $W T 2$. $(O(\log |\Gamma| . k . T))$
- U scans the $I T$ to find the entry of δ that matches with the current state and symbols. and writes the next state, new symbols, head movements on WT 2. (O($\left.C^{\prime}\right)$)
- U changes the symbols on $W T 1$ and move tape heads (using $\left.{ }^{\wedge}\right) .(O(\log |\Gamma| . k . T))$

Universal Turing Machine

U 's simulation of one step of M_{α} :

- U reads the current symbols from WT 1 and writes them on $W T 2$. $(O(\log |\Gamma| . k . T))$
- U scans the $I T$ to find the entry of δ that matches with the current state and symbols. and writes the next state, new symbols, head movements on WT 2. (O($\left.C^{\prime}\right)$)
- U changes the symbols on $W T 1$ and move tape heads (using $\left.{ }^{\wedge}\right) .(O(\log |\Gamma| . k . T))$

