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® Universal TM motivated the invention of general purpose electronic computers.

output of M, on X
F/’
Theorem: There exists a TM U such that Vx,a € {0,1}*, U(x, ) = M _(x). Moreover,

it M, halts on x within 7 steps, then U on (a, x) halts in CT log T steps, where C depends

only on Ms alphabet size, number of tapes, and number of states.

Proof of easier version (CT” instead of CT log T): Next slide...
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